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Abstract

Obstacle detection and mapping are essential for unmanned autonomous driving.  This paper describes both the

sensors and the supporting software used in our system for driving autonomously on cross-country roads.  The

Ladar Range Imaging Camera (EBK) is used for monitoring the environment. We describe an algorithm developed

at the National Institute of Standards and Technology (NIST) for detecting obstacles and regions of concealment,

and evaluate its ability to detect positive (e.g., rocks) and negative (e.g., ditches) obstacles and concealment regions.

We discuss the mapping system used for representing general obstacles (positive, negative, and concealment.)  In

addition to using information provided by the EBK sensor, the mapping algorithm also uses information supplied

by a Global Positioning System (GPS) and an Inertial Navigation System (INS).  This system has been tested at

NIST and has successfully detected obstacles and regions of concealment while driving cross country at speeds of 35

km/h.

1. Introduction

The ability to detect and avoid obstacles is a prerequisite for the success of the Demo III Unmanned Ground

Vehicles (UGV) program[1].  The near term goals of the project are to be able to drive the High Mobility

Multipurpose Wheeled Vehicle (HMMWV) autonomously on cross-country roads with the ability to:

1. Drive autonomously at speeds up to 35 km/h, controlled as appropriate for the terrain and vehicle

dynamics.

2. Detect obstacles and rough terrain conditions in time to enable deceleration to a safe speed or the ability to

steer around the problem condition.
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3. Maintain a control station with an interface for limited mission planning and data collection.

This paper discusses an obstacle detection algorithm developed at NIST in support of the concealment-detection

and rough-terrain conditions.  The algorithm is a hybrid of grid-based and sensor-based obstacle detection and

mapping techniques. The perception and obstacle detection/mapping module is part of the integrated 4D-Realtime

Control System (RCS) [1,2].  It consists of two sections: an obstacle detection section and a mapping section.  The

obstacle detection section processes range data read from a Ladar1 sensor.  The algorithm converts range data into

Cartesian coordinates in the vehicle coordinate frame and uses this information to detect obstacles.  The second

section, the mapping module, projects obstacle points onto a grid-based map.  The map is used by the 4D-RCS

planner module [12] to generate a traversable path for the vehicle.  We have demonstrated autonomous driving with

obstacle detection and avoidance on the NIST grounds at speeds of up to 35 km/h.

Section 2 summarizes the sensors used in the 4D-RCS autonomous driving system.  Section 3 describes the

obstacle detection algorithm and evaluates its performance on natural obstacles.  Section 4 briefly describes the

obstacle mapping module.  In Section 5, we present our conclusions and plans for future work.

2. System Sensors

The sensors used in the system include a Dornier 1.2 Hz Ladar Range Imaging Camera (EBK); the Ashtech

Z12, a Global Positioning System (GPS) sensor, and an Inertial Navigation System (INS) sensor1 [15].  Multiple

navigation sensors are used.  A Kalman filter [10] computes vehicle position and orientation using data from an

inertial, dead-reckoning system and a carrier phase differential GPS unit.  Additional physical information about the

characteristics and references of EBK can be found in [3,4,9].

3. Obstacle Detection Module

The purpose of the obstacle detection module is to extract areas that cannot or should not be traversed by the

HMMWV.  Rocks, fences, trees, and steep upward slopes are some typical examples.  Many approaches for

extracting obstacles from range images have been proposed.  The most common approach is to fit a plane surface to

a patch of points [6,8,19] in a local grid representation.  For example, Hebert [6] and Kelly [11] have used the

approach of fitting planar surfaces to a patch of points to detect obstacles.  Their algorithms are computationally

intensive and have difficulty detecting small obstacles [18].  We propose using differential depth and slope for an

improved, fast obstacle detector.  The algorithm was inspired by Veatch and Davis [18] and Lux and Schaefer [13].

                                                
1 Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify the
experimental procedure.  Such identification does not imply recommendation or endorsement by NIST, nor does it imply
that the materials or equipment identified are necessarily best for the purpose.
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In general, obstacles are classified into three categories: positive, negative, and overhanging.  Examples of

positive obstacles are rocks, trees, fences, etc.  Negative obstacles refer to depressions on the ground, i.e., ditches.

Overhanging obstacles refer to objects that are located directly above the ground.  A tree branch is a typical example

in an outdoor environment.

3.1 Obstacle Detection Algorithm

The LADAR image consists of 128 vertical scan lines, each containing 64 range values.  Approximately half of

the acquisition time is needed for the Ladar’s back-scan.  We process range data as they are read, rather than waiting

for a full image.  In this way, we can detect an obstacle as soon as the data are available.  As each scan line is read, a

filter is applied to the data.  The filter removes outlier points caused by specular reflections.  After the filtering, the

Cartesian (x,y,z) location of each pixel in the scan line is computed in a coordinate system centered at the vehicle

center.  The x, y, z and r (range) values assigned to each pixel are used to compute the depth derivatives and surface

slopes.

3.1.1  Positive Obstacle Classification

The main criterion used for detecting positive obstacles is the surface slope.  A positive obstacle is one whose

surface slope is steep.  This condition is expressed mathematically in the following way:

Let p(i,j) be the ith position pixel in the jth scan line of the EBK image such that
p(0,0) is the lower right corner in the image.

Let x(i), y(i), z(i) be the Cartesian coordinates of p(i), the i th pixel in a scan line.

Let g be the pixel index pointing to the newest labeled ground pixel, G,
described in the next paragraph.

p(k) is a positive obstacle if:
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α is a predefined constant representing the maximum slope allowed, i.e., 30o.
For efficiency, the constant sin2(α) is pre-computed.

The index g is used for tracking the ground pixel G.  It is updated with the value of k if p(k) is not a positive

obstacle and has a small elevation change.  A positive obstacle can have a shallow slope.

Figure 1.  Positive obstacle with shallow slope
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This is expressed mathematically as:

1. 
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H is a pre-defined constant representing the maximum allowed ground
discontinuity.  Currently we assign H a value of 1.0 meter and assume that
ground pixels are present in all scan lines.

In general, the slope in Figure 1 falls as q increases.  Consider a Ladar image of flat terrain, the difference in the

x-coordinates between successive pixels is an increasing function.  Figure 2a shows the plot of the range in the x

direction versus the pixel number of a Ladar scan line. Figure 2b shows the resolution of a single Ladar scan line.

In this plot, dx represents the difference in value in the x direction.

Figure 2.  Ladar range

Because of decreasing resolution, the terrain visible in the Ladar image can be thought of as composed of two

regions: low-resolution and high-resolution.  The high-resolution portion of the image contains densely sampled

terrain points and the low-resolution region represents coarse sampling of the terrain.

Figure 3.  Sensing flat ground

3.1.2  Overhanging Cover Classification

In addition to detecting positive obstacles, the algorithm also examines “overhanging” regions.  We assume

that regions labeled “overhanging” are safe (or concealment) areas.  These areas are referred to as “cover”.  If this

isn’t true, the regions are labeled as being obstacles.  Currently, we use an object’s height as the main

discriminating factor for cover classification.  Specifically, pixels representing positive obstacles with greater than a

pre-defined height are classified as cover pixels.  Some cover pixels may correspond to the upper region of a tall
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object and it may be dangerous or even impossible for the HMMWV to go beneath it.  These pixels may not

represent true regions of cover in which we are interested.  At the sensory processing level, it is not necessary that

“false” cover pixels be sought and eliminated.  They will be rejected by the mapping system described in Section 4.

We could also label regions of  “cover” by looking for pixels that are closer to the vehicle than its closest ground

p(g)  (see Figure 4).  This method was implemented in earlier versions of the algorithm, but is no longer used

because the same information is obtained from the mapping system.

Figure 4.  Cover at p(k)

Estimating an obstacle’s height becomes critical for cover detection.  The vehicle must detect areas of cover

accurately from a distance because the cover may suddenly disappear from the sensor’s field of view as the vehicle

moves toward it.  At that time, the cover might be above the vehicle.  If the cover is actually lower than first

detected and the sensor did not get additional data about it, a collision could occur.

Currently, our height estimation algorithm is based on the simple z-difference calculation.  However, instead of

taking the Z-difference with respect to the closest ground, we use the closest flat ground.  We say a ground pixel is

flat if it has the following property:

Let p(k-1), p(k-2) and p(k-3) be three ground pixels (see Figure 5).

Figure 5.  Flat ground at k-2; newest-labeled ground at k-1; j=2

( ) ( ) 0  j somefor )2jk()1jk()1jk()jk(   ifflat  is j)-p(k >−−−−−>−−−− xxxx

The flat ground is not used in detection of positive obstacles.  It is only used to improve the estimate of an

object’s height.
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3.1.3  Negative Obstacle Classification

Negative obstacle detection presents a harder task at the sensory processing level.  Unlike positive obstacles,

negative obstacles generally do not have steep downward slopes because of occlusion.  One possible solution would

be to mount the sensor higher and increase the tilt angle.  This would allow the slope to be a detecting factor, but it

would also reduce the sensing area.  Ground pixels just before the ditch can be easily detected as a large negative

discontinuity in elevation.  However, to reduce the number of false alarms, ditches are not considered until they are

inside the high-resolution portion of the Ladar image.  For our sensor mounting, this region is within 20 m from

the vehicle.  This range may not be sufficient for driving under high speed.  It is helpful to understand that the

minimum stopping distance required for a vehicle travelling at 8 km/h is approximately 5 meters.  At 16 km/h, the

stopping distance is 10 m, and at 24 km/h, it is 20 m (see Table 2 in Section 3.2.1).  The far walls of a ditch,

however, are positive obstacles and can be detected much further away.

3.2 System Performance Evaluation

Two types of tests were performed to evaluate the obstacle detection algorithm.  Both tests involved collecting

sets of Ladar data, which were analyzed at a later time.  The data was collected at the Perryman site of the Aberdeen

Proving Grounds (APG) in Aberdeen, Maryland.  The surveyed area included rocks, trees, and ditches.

3.2.1  Positive Obstacles

Ideally, we would like to detect a positive obstacle when a single Ladar pixel hits that obstacle.  This is the

case when the corresponding, newest, labeled ground (G) is less than some value q (see Figure 1).  In the low-

resolution region of the image, we may need at least two pixels hitting the obstacle because the first pixel might get

misclassified as a ground pixel.  It is clear that detectability of small positive obstacles depends greatly on where

they lie in the image and where ground points are detected.  In particular, we are interested in learning the distances

at which the algorithm can detect small obstacles.  Some positive obstacles may be harmless.  For example, short

grass and pebbles should be ignored due to their small dimensions.

Figure 6a is a map of the Perryman area containing some large rocks.  The rocks were placed both on-road and

off-road.  The rocks labeled "rock 1" and "rock 2" are approximately 15 cm high and 25 cm wide. Rocks 3 and 4 are

approximately 30 cm high and 30 cm wide.  Rock 5 is approximately 45 cm high and 30 cm wide. The rock cluster

is approximately 45 cm high and 100 cm wide.  Table 1 summarizes the rock data.

Table 1.  Rock data

rock 1 rock 2 Rock 3 rock 4 rock 5 Cluster
height (cm) 15 15 30 30 45 45
width (cm) 25 25 30 30 30 100
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Figure 6.  Perryman Survey of Rock Obstacles

Figure 6b is a video image showing rocks 1, 2, 3 and 4.  Figure 7a shows a Ladar scene of rocks 1 and 2 and

Figure 7b shows the obstacles detected in this image.  Rocks 1 and 2 are highlighted by white boxes in the right

image.

Figure 7.  Rock 1 and 2

Several metrics can be used to measure the performance of the system.  The goal of the obstacle detection

system is to detect an obstacle far enough ahead to provide time for braking or avoidance maneuvers.  We use the

“detected-in-time” metric to evaluate whether the system meets this goal.  Other metrics could be based on error

rate, i.e., false positives, false negatives and true positives.  The “detected-in-time” metric is defined as:

If Detected_Range ≥ Stop_Distance   THEN

Detected_In_Time = YES;

Else

Detected_In_Time = NO;

The quantity Detected_Range is the range at which an obstacle is first detected and the quantity Stop_Distance is

the distance required to stop the vehicle given the current vehicle speed.  The metric Detected_In_Time is a binary

direction of approach

(b)

(a)
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value that tells whether the system was able to detect an obstacle in time for the vehicle to stop.  The metric

evaluates the sensor and the obstacle detection algorithms.  If results indicate the obstacle is not detected in time,

then apart from changing the sensor or algorithms, the vehicle speed should be decreased.  Referring to the metric,

the Stop_Distance has two components:

1. Reaction_Distance is the distance traveled from the time the obstacle is detected until the brake is fully

depressed (emergency stop).  It is computed as the product of Reaction_Time and the current speed.

Reaction_Time is the sum of the planning time to decide to perform an emergency stop and the actuation

time to depress the brake pedal fully.

2. Braking_Distance is the distance traveled from the time the brake pedal is fully depressed until the time the

vehicle stops.  It is computed as:  )  
onAccelerati  2

(Speed)-
 (  stanceBraking_Di

2

=

The vehicle can be driven at different speeds and the terrain and soil conditions will affect the deceleration

capability of the vehicle.  Table 2 gives the empirical stopping distance at the speeds used for our data collection

while varying the vehicle’s deceleration capability.  For this evaluation, we set the Reaction_Time to a conservative

value of 1 second and used a –2 m/s2 deceleration.

Table 2.  Stopping distances based on speed and time to stop

Table 3 shows the evaluation results of the system’s ability to detect positive obstacles.  For each of the three

speeds, the distance at which the obstacle was detected (Detected_Range) is listed.  Below each range value is a

YES or NO indicating the result of the “detected-in-time” metric.  For example, rock 1 was detected in time at 8

km/h and at 16 km/h, but not at 24 km/h.  The results from the data suggest that the system is able to detect

obstacles in time at speeds up to 16 km/h but obstacles are missed at 24 km/h.  At a Reaction_Time of 0.25

seconds, no obstacle would be missed.

Table 3.  Result of positive obstacle detection performance evaluation

Driving speed Stopping distance (m) at
-2 m/s2

Stopping distance (m) at
-3 m/s2

Stopping distance (m) at
-4 m/s2

8 km/h 3.5 m 3.1 m 2.9 m
16 km/h 9.4 m 7.8 m 7.0 m
24 km/h 17.8 m 14.1 m 12.3 m

Reaction_Time =
1 second Rock1 Rock2 Rock3 Rock4 Rock5 Rock Clump

Stopping distance
(m) at –2 m/s2

deceleration
8 km/h 13.9 m 20.2 m 18.6 m 25.0 m 12.8 m 31.8 m 3.5 m
Detected in time? YES YES YES YES YES YES
16 km/h 13.2 m 20.5 m 22.3 m 24.1 m 17.0 m 26.0 m 9.4 m
Detected in time? YES YES YES YES YES YES
24 km/h 15.0 m 24.3 m 22.2 m 26.6 m 13.7 m 30.6 m 17.8 m
Detected in time? NO YES YES YES NO YES
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The variability of detection is a result of the following factors:

(1) Data acquisition rate (1 image per second).

(2)  Relationship between vehicle velocity and the image resolution.  If the vehicle is moving quickly, the

scanning Ladar beam may miss the obstacle completely.

(3) Difficulty in identifying the targeted obstacle when it is hidden in tall grass.

The need for recognizing and classifying obstacles is clear from the outputs shown in these figures.  In addition

to the rocks and/or rock cluster, the algorithm has flagged tall grass, bushes, and background trees as obstacles.  Our

future work includes plans to fuse Ladar images with video images to generate windows of interest in the video

images.  Classification of obstacles will be based on the information in the video windows.

3.2.2  Negative Obstacles

In this section, we describe our analysis of negative obstacles.  Our objective is to determine the farthest range

at which pixels representing depressions1 can be detected.  In addition to the Ladar data, sets of images from 3 pairs

of stereo cameras were collected.1  The stereo data were analyzed by scientists at NASA's Jet Propulsion Laboratory

(JPL) using algorithms designed for stereo inputs [14].  This report discusses only the results of the Ladar obstacle

detection algorithm.

Figure 8 is a map of the sections of Perryman in which negative obstacle (ditch) data were collected.  The

ditches were dug by a back hoe.  Ditch 1 is 0.61 m wide; Ditch 2 is 1.22 m wide, Ditch 3 is 1.83 m wide, and

Ditch 4 is 2.44 m wide.  The lengths of all the ditches are the same.  These data are used to evaluate the

effectiveness of the algorithm in detecting negative obstacles (depressions in the ground plane).

Figure 8.  Ditch Survey Site

Data were collected at different times of day under varying weather conditions.  Based on our experiments, a

decrease in daylight did not affect the Ladar data which performed at the same level during dawn, daylight, and

evening hours.  For each of the ditches, the HMMWV was driven at speeds of 8 kilometers per hour (km/h),

16 km/h, and 24 km/h.  The vehicle's approach to the ditches also varied: some runs were perpendicular to the

                                                
1 Walls of the ditch.
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ditches; some were oblique.  The output of the obstacle detection algorithm is qualitatively evaluated by an

experienced user.

Figure 9 shows two images taken from the “ditch 1” data set: the unprocessed Ladar image (Figure 9a) and the

processed image (Figure 9b).  The Ladar image is encoded as grey-scale values such that darker grey values represent

ranges farther from the sensor.  White pixels in the processed image represent pixels labeled as obstacle points.

Although it is very difficult to recognize the ditch in the raw image, the ditch pixels are detected in the processed

image.  The ditch is 10 m from the vehicle in Figure 9.

Figure 9.  “Ditch 1” Raw and processed ladar data

Table 4 shows the results of the obstacle detection algorithm on the ditch data as the vehicle approached the

ditches in the normal direction. The distances, measured in meters, represent the farthest distance at which the

algorithm extracted pixels representing ditch data.  The pixels associated with the ditch are qualitatively

recognizable to a trained eye.

The performance of negative obstacle detection is very similar to that of positive obstacle detection.  This is

because the far wall of the ditch is itself a positive obstacle.

Table 4.  Results of negative obstacle detection performance evaluation

                                                                                                                                                            
1 A complete description of the data collection can be found at:
http://www.isd.cme.nist.gov/personnel/coombs/proj/mobility/data/apg-data/doc/datanotes.html

walls of the ditch

Driving speed Ditch1 Ditch2 Ditch3 Ditch4

Stopping distacne
at –2 m/s2

deceleration
Speed = 8 km/h 10.0 m 19.0 m 17.0 m 23.0 m 3.5 m
Detected in  time? YES YES YES YES
Speed = 16 km/h 10.0 m 14.0 m 20.0 m 20.7 m 9.4 m
Detected in  time? YES YES YES YES
Speed = 24 km/h 9.5 m 15.0 m 20.5 m 21.2 m 17.8 m
Detected in  time? NO NO YES YES
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3.3 Overhanging obstacles

In this section, we describe the analysis of overhanging obstacles.  Data were collected while driving at 8 km/h

toward trees of unknown height.  Our objective was to verify the algorithm’s accuracy in determining an obstacle’s

height.

Figure 10a shows a Ladar image of trees at 45 meters while driving at 8 km/h.  Although the trees are barely

detectable by the human eye in the Ladar image, they are detected and classified in the corresponding processed

image (Figure 10b).  The light-grey regions on the processed image indicate tree branches higher than 2 meters.

The dark-grey regions represent positive obstacles shorter than 2 meters.  Note that some pixels are misclassified as

ground pixels (mid-grey).  This is due to the decreasing resolution discussed in sections 3.1.1.  The white pixels

represent either invalid data or positive obstacles of negligible dimension, i.e., pebbles and short grass.

Figure 10.  Trees at 45m

4. Map and Object Module

We adapted Kelly’s [11] grid obstacle map for representing obstacles for path planning and vehicle control.

The map representation contains terrain surface slopes, uncertainty measures, average elevation information, and a

list of obstacles for every grid cell on the map.  In some cases, a grid/map cell may contain both overhanging and

positive obstacles.  We give positive obstacles higher precedence and ignore overhanging obstacles.  This has the

effect of rejecting “false cover”, as defined in Section 3.1.2.

The path-planning algorithm currently implemented in the 4D-RCS system [1] uses only a subset of the

information contained in the map.  It generates traversability paths from the map by using a binary flag indicating

whether or not the grid cell contains an obstacle, a timestamp indicating when an obstacle was last updated, and an

obstacle confidence value.

4.1 The World Model Representation

The world representation is based on the 2_-D model.  In this model, the world is projected onto a ground

plane with a fixed-size grid.  Each grid cell contains the information mentioned in Section 4.  This representation is

(a) (b)

small and negligible
obstacles

branches higher
than 2 m (light-
grey)

branches lower
than 2 m (dark-
grey)

Ground (mid-grey)
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fast and easy to maintain when compared with typical tree data structures.  Efficient use of memory can be achieved

by allocating space only to grid cells that contain data.

4.2 The scrolling local map

We use an efficient, scrolling, local map that updates new sensor data while keeping the vehicle centered on the

map.  This approach has the advantage of minimizing grid relocation – no copying of data is done; only updating.

Figure 11 shows a local map and its corresponding obstacle image.  The light-grey regions represent areas of

overhanging obstacles.  The mid-grey regions represent detected ground and the dark-grey pixels positive obstacles.

The dashed-line represents the path travelled by the vehicle.

Figure 11.  Local scrolling map.

4.3 Confidence-based Mapping

Our map updating algorithm is based on the concept of confidence-based mapping described in Oskard’s paper

[16].  In this algorithm, the confidence increases/decreases linearly when updated by the sensor.  When a map cell

receives a vote for “obstacle”, the cell’s obstacle confidence goes up by a predefined constant.  Only when the

confidence exceeds a certain threshold will the map cell get marked as “obstacle”.  A similar algorithm is used for

marking “cover” map cells.

When a map cell receives a conflicting vote, the associated confidence goes down.  Although this mechanism

tends to resist noisy data from the sensor, it assumes a fairly static environment.  When an obstacle moves, an

obstacle trail is left on the map.  This obstacle trail eventually fades as the confidence drops; however, there are

instances where the confidence may not drop.  For example, if the trail suddenly gets shifted outside the field of view

High tree branches
(overhanging obstacles,
light-grey)

Current vehicle position

positive obstacle (dark-
grey)
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because of vehicle motion, no new updates will arrive to change the trail status.  A similar situation occurs when the

vehicle remains stationary with an object moving in the low-resolution region in the Ladar image.  The map cell

containing the moving obstacle’s original position may not get updated again; the Ladar scan may simply miss that

location due to low resolution.  In order to fully address this problem, a moving-obstacle detection module is

required.  Our current approach for dealing with an obstacle trails is to decrease the reaction time needed to change

their classification.

4.4 The Object representation

Object and feature descriptions are organized in a table indexed by their types and by their map locations.  This

data structure is very similar to the one described by Shneier [17] in which objects are indexed spatially by a pointer

associated with each node in the octree.  Additional entry fields in our representation include object type, velocity,

GPS (Global Positioning System) position and dimension.

5. Future work and discussion

As noted in section 4.2, confidence-based mapping may not be adequate for tracking moving obstacles.

Currently, we do not utilize a hypothesis/prediction model for predicting the motion of moving obstacles.  We

believe such an approach may be useful for maintaining knowledge of local obstacles at the sensory processing level.

This knowledge could be used to improve detection accuracy and could also be used to detect moving obstacles.

We are also considering using temporal integration to address the problem of low-resolution Ladar images.  In

this way, we could use additional terrain information from overlapping regions from previous Ladar images.   We

believe that most of the missing terrain due to low-resolution could be filled and could be used during obstacle

detection.

The current obstacle detection algorithm does not model the ground.  Although this algorithm is fast, adequate,

and provides satisfactory results, queries regarding terrain roughness or any terrain-related measure simply can not be

answered.  Our future obstacle detection algorithm will include a recursive least square filter for ground modeling.

We believe a more accurate ground model will result in a more accurate estimation of an obstacle’s height.

6. Conclusion

We have described an algorithm designed to detect obstacles in Ladar imagery.  The algorithm is one of a suite

of algorithms being tested in order to evaluate different sensors that might be used for obstacle detection in the

Unmanned Ground Vehicle program.  We have addressed the need for a moving-obstacle detection module and
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discussed various improvements for future implementation.  We have characterized the Ladar sensor being used, and

described its performance on different types of surfaces.

In order to evaluate the obstacle detection algorithm, we collected extensive sets of Ladar data and defined a

performance metric.  The data were used as input for the obstacle detection algorithm.  The algorithm was able to

detect positive obstacles (e.g., rocks), overhanging areas (e.g., tree branches), and negative obstacles (e.g., ditches)

with varying degree of success.  Detectability was determined to be a function of both the range to the obstacle and

the size of the obstacle.  The results of the evaluation tests were reported.  Conservative evaluations indicated current

Ladar (1.2 Hz) limits vehicle speed to 16 km/h.

The obstacle detection algorithm was also tested in a real-time demonstration as part of the 4D-RCS control

system.  In conjunction with the planner module and behavior generation modules [1], we were able to detect

obstacles on both the NIST grounds and the NIKE test site in Gaithersburg, Maryland.
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